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FPGAs are powerful...but often prohibitively expensive

This has pushed us towards...
▶ Cloud-FPGA leasing schemes (temporal sharing)
▶ Integration of proprietary IP
▶ Full FPGA virtualization (temporospatial sharing)

Observation: These are all multi-actor structures—potentially
running hidden opaque circuitry.
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Temporospatial (Multi-Tenant) Cloud FPGAs

We refine our threat model around cloud multi-tenant
FPGAs—but we study fundamental qualities of voltage fluctuation
sensors that can apply to any multi-actor structure.
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deploys voltage sensor

2. Collects sensor
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Voltage Fluctuation Sensors

We are interested in Time-to-Digital Converters (TDC):

1. An instrument for synchronously measuring the load on the
power distribution network

2. Easy to disguise as they resemble carry-adders and can be
designed to include no timing violations

A brief overview of a canonical TDC.
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Known Problems: Architectural Irregularities

This is a nice theoretical model:
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Perfect delay line doesn’t exist:

▶ More linear propagation = more responsive to fluctuations

▶ Faster propagation = higher resolution
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Known Problems: Architectural Irregularities

Map TDC to CARRY primitives. Fast and linear....locally.
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Solution: Dynamic θ Tuning

Constant phase offset.
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▶ Leverage programmable clock generator

▶ Propagation distance is now configurable

▶ Attacker can place transition at ideal point within CARRY
primitive, improving sensor response to power fluctuations.
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A New Problem: Sampling Phase Alignment

▶ θ, the phase relationship between
launch and capture defines a
window

▶ Only power fluctuations within
window are captured by the TDC

▶ Victim core is also likely
synchronous, and induced power
fluctuation is brief

▶ Lets phase shift launch and capture
clock together, wrt victim
computation

Bad Phase (ϕ) Alignment!

Launch Clock

Capture Clock

Victim
VDD

Good Phase (ϕ) Alignment!

Launch Clock

Capture Clock

Victim
VDD
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Solution: Dynamic Co-Tenant Phase Alignment

Our θ tunable Time-to-Digital Converter:
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Solution: Dynamic Co-Tenant Phase Alignment

▶ Instantiate sensor alongside
soft-processor AES. Both
25MHz.

Expect to see a single optimal ϕ

Launch Clock

Capture Clock

Victim
VDD

Many “optimal” ϕ

Taking the difference from the background exposes optimal
ϕ to capture power fluctuations induced by victim.
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Classification Attack

▶ Sensor co-located with each of 13 victim
computations on multiple boards

▶ Sensor is tuned to some value of θ and ϕ
to minimize (maximize) θ and ϕ

▶ Sensor is sampled as victim executes

▶ Some number of boards are reserved for
training, some for testing, representing
the hypothetical divide between cloud and
local FPGAs.

▶ The data is then processed....

▶ Classification accuracy across 13
applications reflects the sensors ability to
capture sensitive information across the
channel.
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Classification Accuracy by Tuning Configuration

▶ Worst case: min standard
deviation of θ (likely a
plateau), and ϕ (likely phase
misaligned).

▶ Good θ: max standard
deviation of θ, and min ϕ.

▶ Good θ and ϕ: max standard
deviation of θ, and max ϕ.

▶ Good θ and ϕ: with ϕ
background subtraction.
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So background subtraction is useless?

Check the cross validation performance

▶ Test every combination
and number of training and
testing board

▶ Examine accuracy vs #
training boards. Reduces
IQR by 2.3X.

▶ Examine loss vs # training
boards. Reduces IQR by
5.8X.

▶ Data generalizes better

Background Subtraction is Out-of-Distribution
Generalization!
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Conclusion/Questions

Don’t let θ and ϕ assume a random value!
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