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» Determine what is running on an actor's soft-processor
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system
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Temporospatial (Multi-Tenant) Cloud FPGAs

We refine our threat model around cloud multi-tenant
FPGAs—but we study fundamental qualities of voltage fluctuation
sensors that can apply to any multi-actor structure.
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Known Problems: Architectural Irregularities
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Solution: Dynamic 6 Tuning

Constant phase offset.
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» Propagation distance is now configurable
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Classification Attack

» Sensor co-located with each of 13 victim Raw Data
computations on multiple boards 1

. [
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Classification Attack

| 2

Sensor co-located with each of 13 victim
computations on multiple boards

Sensor is tuned to some value of 6 and ¢
to minimize (maximize) 6 and ¢
Sensor is sampled as victim executes

Some number of boards are reserved for
training, some for testing, representing
the hypothetical divide between cloud and
local FPGAs.

The data is then processed....

Classification accuracy across 13
applications reflects the sensors ability to
capture sensitive information across the
channel.
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Classification Accuracy by Tuning Configuration

» Worst case: min standard
deviation of 6 (likely a
plateau), and ¢ (likely phase
misaligned).
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. . 0,
» Worst case: min standard Good 9-"519-16046 Y
% & o o
. . & & & IQ@?’Q,@ L L
deviation of 6 (likely a Lo FEFATSEASS

plateau), and ¢ (likely phase
misaligned).

» Good #: max standard
deviation of #, and min ¢.

0700.00100110.00]0.0210.00]0.0210.07]0.070.3
1003]0.0110.03 060l 0.3 0100010 010000010 02 03 o 02
10.0410.0010.01 100015001073 0.00 00310 0010011007 0.08 0.2
(020010 01 00010.00706) .05 0.02 000100110 03 03 0.02

True Label

10.0910.0110.040.00[0.0010.01100010 56 [0.00[0.0210.1410.05 0.0
oa1looolo.01Jooolo.00l000l00 001074 [0.01 040 07 0w
(0.0210.0410.040.010.0010.0110.010.01[0.00 .52 02010 06 0.3
10.310.0310.0410.02]0.00]01 o 00 0.0 000 007 0.72

Predictions

12/14



Classification Accuracy by Tuning Configuration

» Worst case: min standard Good 92651% 160%
deviation of 6 (likely a S SRS
plateau), and ¢ (likely phase
misaligned).

& o (0051027 [0.0510.00]0.0010.1 0,00 00110.00[0.01 100 0,06 004
K
> Good 0: max standard 0 (2250051023100210.0110.0710.0110.050.0110.05 0 04 0.1510
L . Ao 0700.00100110.00]0.0210.00]0.0210.07]0.070.3
deviation of #, and min ¢. 5
o eoalooilooa[6.00]o.3 (01 Jo.oolona o.0olo o1 oz 0.3l oz
N
P ) ) 2 10 5 ) ) ) X G O )
" 0100010010 0lo00To .5 00ato o onlo0sloualooa
N
* o pebalonbulmlalselssslownlloilonlosns
Q\& & pailowloailowlooslonlossloorlors bailoislon ooy
0P 2 2 170 G O 20 ) GED O D
A
N & paslisloloulooslooilossloailosslonlor bloss
&ﬁ&c, (0:14100510.050.010.0010.0110.0010.04 0.000.0310.2810 30 0.5

\(7' > 0.10{0.09(0.07/0.01]0.00|0.02{0.01{0.03/0.00/0.02|/0.30{0.13{0.23
AP —
Predictions

O,
C. 75
elo ,

» Good 6 and ¢: max standard
deviation of #, and max ¢.

O/‘
’bé\

True Label

%

12/14



Classification Accuracy by Tuning Configuration
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So background subtraction is useless?

Check the cross validation performance
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Background Subtraction is Out-of-Distribution
Generalization!
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Conclusion /Questions

Don't let # and ¢ assume a random value!
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Thanks!
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