Classifying Computations on Multi-Tenant FPGAs

Colin Drewes ¹ Mustafa Gobulukoglu ¹ Olivia Weng ¹ Steven Harris ¹ Winnie Wang ¹ William Hunter ³ Christopher McCarty ³ Ryan Kastner ¹ Dustin Richmond ²

¹UCSD ²UW ³GTRI

2021

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposed Threat-Model

- 1. FPGAs are powerful, but expensive \rightarrow time-sharing, virtualization, proprietary IP
- 2. All expose a side-channel through shared power distribution
- 3. Classifier trained on local board data—needs to generalize

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

4. Can be leveraged to determine aspects of co-located computation (Type of computation? Implementation?)

Co-Located Applications

- 1. Sensor Only
- 2. Ring Oscillators
- 3. Arithmetic Heavy

4. Cryptographic Cores (AES, PRESENT)

- 4.1 Custom IP AES + PRESENT
- 4.2 Orca
- 4.3 PicoRV
- 4.4 Microblaze
- 4.5 CortexM3

Refining the Problem

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

Capture/Launch Clock Tuning (θ) — First Index

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Capture/Launch Clock Tuning (θ) — Hamming Distance

イロト 不得 トイヨト イヨト

-

Target Clock Tuning (ϕ) — AWS Sensor Only

Target Clock Tuning (ϕ) — PNYQ Sensor Only

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Target Clock Tuning (ϕ) — PNYQ Pico AES

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Classification

- 1. Sensor is tuned (θ , ϕ)
- 2. Sensor captures a long trace (many thousand samples)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 3. FFT taken on output of sensor
- 4. Fed into single layer network
- 5. Examining the follow configurations of the sensor:

5.1 (
$$\uparrow \theta_{min}, \phi_{min}$$
)
5.2 ($\downarrow \theta_{max}, \phi_{min}$)
5.3 ($\downarrow \theta_{max}, \phi_{max}$)
5.4 ($\downarrow \theta_{max}, \phi_{back}$)
5.5 ($\uparrow \theta_{max}, \phi_{back}$)

DAC Paper Limitations

- 1. Left (θ , ϕ) as their default states
- 2. Showed that computations could be classified clunky neural network classifying STFTs images
- 3. No cross-board generality
- 4. Poor classification within architectural class

↓ = ↓ = ↓ = ↓

Resulting Accuracy

Tuning	Accuracy (%)	Loss
$(\uparrow \theta_{min}, \phi_{min})$	32.146	2.159
$(\downarrow heta_{max}, \phi_{min})$	51.160	1.644
$(\downarrow heta_{max}, \phi_{max})$	75.788	0.834
$(\downarrow \theta_{max}, \phi_{back})$	75.552	0.733
$(\uparrow \theta_{max}, \phi_{back})$	80.268	0.626

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Resulting Accuracy ($\uparrow \theta_{min}, \phi_{min}$)

Predictions

Resulting Accuracy ($\downarrow \theta_{max}, \phi_{min}$)

Predictions

Resulting Accuracy ($\downarrow \theta_{max}, \phi_{max}$)

Predictions

Background Subtraction Does Matter

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Conclusions

- 1. The phase between the sensor's sampling and the clock (ϕ) of a co-tenant is essential in extracting side-channel information
- 2. Configuring the duration a transition is allowed to propagate through the sensor (θ) is important for avoiding architectural irregularities
- 3. Background subtraction is a useful tool for isolating co-tenant information in a noisy power distribution network

So what else do these sensors do?

1. Measure delay through elements, and changes in that delay

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- 2. Launch Clock \rightarrow Component \rightarrow Carry Chain
- 3. Component 's delay can change....and depends on its previous state
- 4. Can recover this previous state based on delay

Bonus: Voltage Fluctuation Sensor

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@